New Application Note Describes Electrochemical Atomic Force Microscopy for Understanding Corrosion Mechanisms at the Nanoscale

January 30, 2018 (Santa Barbara, CA) - Combining an atomic force microscope (AFM) with electrochemical capabilities creates a powerful tool for studying corrosion, oxidation, and mass transfer of metals at the nanoscale. The new application note “Exploring Corrosion with Electrochemical AFM” from Oxford Instruments Asylum Research discusses how AFM can be used to study the nanoscale evolution of bias-dependent reactions in real time at the charge interface. Topics include how measurement environment is controlled to mimic real-world corrosion conditions; time-lapse examples of corrosion mechanisms; and how the unique capabilities of Asylum Research’s Cypher ES with a fully-sealed EC cell, fast scanning, and blueDrive™ photothermal excitation greatly improve both spatial and temporal resolution. The application note can be downloaded at

“Corrosion is a global infrastructure problem estimated to cost $2.5 trillion annually,” said Dr. Nate Kirchhofer, Asylum Research Applications Scientist. “It is critical to understand nanoscale dynamics such as corrosion potentials, the nucleation and propagation behavior of defects, and electrochemical reaction rates so researchers and engineers can improve materials and designs to better withstand corrosion. It is estimated that 15-35% of that cost could be saved if corrosion control best practices and technology were implemented, and AFM is the ideal tool to help discover new solutions.”

About Oxford Instruments Asylum Research

Oxford Instruments Asylum Research is the technology leader in atomic force microscopy for both materials and bioscience research. Asylum Research AFMs are widely used by both academic and industrial researchers for characterizing samples from diverse fields spanning material science, polymers, thin films, energy research, and biophysics. In addition to routine imaging of sample topography and roughness, Asylum Research AFMs also offer unmatched resolution and quantitative measurement capability for nanoelectrical, nanomechanical and electromechanical characterization. Recent advances have made these measurements far simpler and more automated for increased consistency and productivity. Its Cypher™ and MFP-3D™ AFM product lines span a wide range of performance and budgets. Asylum Research also offers its exclusive SurfRider™ AFM probes among a comprehensive selection of AFM probes, accessories, and consumables. Sales, applications and service offices are located in the United States, Germany, United Kingdom, Japan, France, India, China and Taiwan, with distributor offices in other global regions.

About Oxford Instruments plc

Oxford Instruments designs, supplies and supports high-technology tools and systems with a focus on research and industrial applications. Innovation has been the driving force behind Oxford Instruments' growth and success for over 50 years, and its strategy is to effect the successful commercialisation of these ideas by bringing them to market in a timely and customer-focused fashion.

The first technology business to be spun out from Oxford University, Oxford Instruments objective is to be the leading provider of new generation tools and systems for the research and industrial sectors with a focus on nanotechnology. Its key market sectors include nano-fabrication and nano-materials. The company’s strategy is to expand the business into the life sciences arena, where nanotechnology and biotechnology intersect.

This involves the combination of core technologies in areas such as low temperature, high magnetic field and ultra high vacuum environments; Nuclear Magnetic Resonance; x-ray, electron, laser and optical based metrology; atomic force microscopy; optical imaging; advanced growth, deposition and etching.

Oxford Instruments aims to pursue responsible development and deeper understanding of our world through science and technology. Its products, expertise, and ideas address global issues such as energy, environment, security and health.

More from Material Processing

All Topics