ROHM Launches LMR1802G-LB CMOS Op-Amp for High-Accuracy Sensing Applications

Press Release Summary:

The LMR1802G-LB CMOS Op-Amp features a phase margin of 68° and capacitive load tolerance of 500 pF. The unit is suitable for applications such as sonar systems, optical sensors, Security systems, IR remote controls and night vision. It is offered in 2.9 x 2.8 x 1.25 mm SSOP5 package and can be operated in -40ºC to 125ºC temperature range with 2.5V to 5.5V input supply voltage range. The op-Amp provides 450 µV and 0.5pA of input offset voltage and input bias current respectively.

Original Press Release:

New CMOS Op-Amp from ROHM Delivers Leading-Class Low Noise

Ideal for industrial applications that demand high-accuracy sensing, including sonar and optical sensors

ROHM has recently announced the availability of a CMOS op-amp featuring the lowest noise in the industry optimized for industrial applications requiring high-accuracy sensing, such as accelerometers used in sonar systems, and optical sensors that handle ultra-small signals.

In recent years, in addition to IoT devices, sensors are being adopted in a variety of applications from portables and vehicle systems to industrial equipment, to improve functionality and provide advanced control. Used to detect and convert various environmental and physical changes into signals, sensors demand high accuracy, but at the same time peripheral sensor circuitry is trending towards lower voltages to achieve greater power savings.

Op-amps are configured at the rear stage to amplify the analog sensor output, but because sensor signals are so weak it is necessary to implement noise countermeasures to ensure high-accuracy transmission. In response, ROHM developed a high noise tolerant op-amp for the automotive market utilizing a vertically integrated production system that leverages original analog design technologies and processes. ROHM has introduced an op-amp that delivers the industry’s best performance against external noise optimized for consumer devices and industrial equipment.

The LMR1802G-LB, developed utilizing ROHM’s market-leading analog technology covering circuit design, processes, and layout, reduces input equivalent noise voltage density by half (2.9nV/√Hz at 1kHz, 7.8nV/√Hz at 10Hz) compared to conventional products, significantly improving the detection performance of sensor signals. In addition, best-in-class phase margin (68°) and capacitive load tolerance (500pF) provide excellent stability (difficult to oscillate, easy to handle). This enables accurate amplification of voltages in the order of µV, ensuring support for industrial and consumer applications requiring high-precision sensing.

Key Features

1.Easy to use despite low noise results in the industry’s best performing CMOS op-amps


This latest product combines ROHM’s superior analog technology covering circuit design (new circuit at the differential input stage), layout (analog design cultivated over many years), and processes (optimized for low noise) to achieve ultra-low-noise. The input equivalent noise voltage density of 2.0nV/√Hz at 1kHz and 7.8nV/√Hz at 10Hz are approximately half that of products on the market, ensuring superior low-noise performance.

In addition, in the past when pursuing lower noise in op-amps there were problems such as poor phase margin and capacitive load characteristics, as well as oscillation that made circuit design difficult, but introducing a new circuit at the differential input stage allowed ROHM to achieve industry-low noise along with a class-leading phase margin of 68° and capacitive load tolerance of 500pF.

This doubles the detection capability of sensor signals over conventional solutions, enabling accurate amplification of voltages on the order of µV, improving performance with sensors that demand higher precision.

2. Minimizes input offset voltage and input bias current

In terms of op-amp configuration, the output voltage should be 0V when the input is 0V, but an offset voltage is often generated as an error. Also, if the sensor’s output impedance is high the sensor output voltage will be affected if the input bias current of the op-amp is large. Consequently, these two error factors must be made as small as possible to ensure optimal performance.

The LMR1802G-LB offers an input offset voltage of 450µV and input bias current of only 0.5pA (4x and 2x less than conventional products, respectively), providing high accuracy amplification.

Availability: June 2018 (Samples), October 2018 (OEM quantities)

Application Examples

  • Distance measuring equipment utilizing sonar and optical sensors
  • Security systems, IR remote controls, night vision, and other sets equipped with IR sensors
  • Devices demanding high accuracy operation (i.e. HDD)
  • Equipment management systems including flow meters and gas detectors
  • Other industrial and consumer sets integrating sensors requiring high accuracy detection


Part No.              No. of            Supply Voltage            Input Offset      Input Bias      Input Conversion      Operating Temp.      Package          Package Size
                            Circuits              Range                        Voltage            Current          Noise Voltage            Range

LMR1802G-LB       1                 2.5V to 5.5V                   ±450µV           0.5pA          2.9nV/√Hz (1kHz)      -40ºC to 125ºC       SSOP5           2.9 x 2.8 x 1.25mm
                                                                                                                                   7.8nV/√Hz (10Hz)

Download Spec Sheet

All Topics