ThomasNet News Logo
Sign Up | Log In | ThomasNet Home | Promote Your Business

NIST Study finds carbon nanotubes may protect DNA from oxidation.

Print | 
Email |  Comment   Share  
November 19, 2012 - In paper, Protective Roles of Single-Wall Carbon Nanotubes in Ultrasonication-Induced DNA Base Damage, NIST researchers provide evidence that nanotubes may protect DNA molecules in laboratory. Fragments of DNA were tested in presence or absence of carbon nanotubes. Research is part of work to help characterize potential risks of nanomaterials, and develop methods for identifying and measuring them. More studies are needed to see if same protective effect occurs in vivo.

NIST Study Suggests Carbon Nanotubes May Protect DNA from Oxidation


(Archive News Story - Products mentioned in this Archive News Story may or may not be available from the manufacturer.)

National Institute of Standards & Technology
100 Bureau Dr., Stop 1070
Gaithersburg, MD, 20899-1070
USA



Press release date: November 14, 2012

Researchers at the National Institute of Standards and Technology (NIST) have provided evidence in the laboratory that single-wall carbon nanotubes (SWCNTs) may help protect DNA molecules from damage by oxidation. In nature, oxidation is a common chemical process in which a reactive chemical removes electrons from DNA and may increase the chance for mutations in cells. More studies are needed to see if the in vitro protective effect of nanotubes reported in the laboratory also occurs in vivo, that is, within a living organism.

Scanning electron microscope image of a typical sample of the NIST single-wall carbon nanotube soot standard reference material. Recent NIST research suggests that, at least in the laboratory, carbon nanotubes may help protect DNA molecules from damage by oxidation. The image shows an area just over a micrometer wide. (Color added for clarity.)

"Our findings don't tell us whether carbon nanotubes are good or bad for people and the environment," says Elijah Petersen, one of the authors of the study. "However, the results do help us better understand the mechanisms by which nanotubes might interact with biomolecules."

Single-wall carbon nanotubes—tiny hollow rods that are one-atom-thick sheets of graphene rolled into cylinders 10,000 times smaller in diameter than a human hair—are prized for their extraordinary optical, mechanical, thermal and electronic properties. They are being used to produce lightweight and extremely strong materials, enhance the capabilities of devices such as sensors, and provide a novel means of delivering drugs with great specificity. However, as carbon nanotubes become increasingly incorporated into consumer and medical products, the public concern about their potential environmental, health and safety (EHS) risks has grown. Scientifically determining the level of risk associated with the carbon nanotubes has been challenging, with different studies showing conflicting results on cellular toxicity. One of the components lacking in these studies is an understanding of what physically happens at the molecular level.

In a recent paper,* NIST researchers investigated the impact of ultrasonication on a solution of DNA fragments known as oligomers in the presence and absence of carbon nanotubes. Ultrasonication is a standard laboratory technique that uses high-frequency sound waves to mix solutions, break open cells or process slurries. The process can break water molecules into highly reactive agents such as hydroxyl radicals and hydrogen peroxide that are similar to the oxidative chemicals that commonly threaten mammalian cell DNA, although the experimental levels from sonication are much greater than those found naturally within cells. "In our experiment, we were looking to see if the nanotubes enhanced or deterred oxidative damage to DNA," Petersen says.

Contrary to the expectation that carbon nanotubes will damage biomolecules they contact, the researchers found that overall levels of accumulated DNA damage were significantly reduced in the solutions with nanotubes present. "This suggests that the nanotubes may provide a protective effect against oxidative damage to DNA," Petersen says.

A possible explanation for the surprising result, Petersen says, is that the carbon nanotubes may act as scavengers, binding up the oxidative species in solution and preventing them from interacting with DNA. "We also saw a decrease in DNA damage when we did ultrasonication in the presence of dimethyl sulfoxide (DMSO), a chemical compound known to be a hydroxyl radical scavenger," Petersen says.

Petersen says that a third experiment where ultrasonication was performed in the presence of DMSO and SWCNTs at the same time produced an additive effect, reducing the DNA damage levels more significantly than either treatment alone.

This research is part of NIST's work to help characterize the potential EHS risks of nanomaterials, and develop methods for identifying and measuring them.

* E.J. Petersen, X. Tu, M. Dizdaroglu, M. Zheng and B.C. Nelson. Protective roles of single-wall carbon nanotubes in ultrasonication-induced DNA base damage. Small (2012), DOI: 10/1002/smll.201201217.

Media Contact: Michael E. Newman, michael.newman@nist.gov, 301-975-3025


Print | 
Email |  Comment   Share  
Contacts: View detailed contact information.


 

Post a comment about this story

Name:
E-mail:
(your e-mail address will not be posted)
Comment title:
Comment:
To submit comment, enter the security code shown below and press 'Post Comment'.
 



 See related product stories
More .....
 See more product news in:
Services
 More New Product News from this company:
NIST-Sponsored Report addresses greenhouse gas measurement.
Disaster/Failure Study Data will be available via NIST website.
NIST Physicist receives 2011 William F. Meggers Award.
More ....
| Featured Manufacturing Jobs
 Other News from this company:
NIST-University of Maryland Conference to Highlight Women in Physics
NIST MEP Sets Up One-Stop Shop for Manufacturing-Related Research and Reports
Grants to Two States Will Support Improved Access to Services and Reduce Fraud
NIST Cybersecurity Framework
NIST Releases Updates to Digital Signature Standard
More ....
 Tools for you
Watch Company 
View Company Profile
Company web site
More news from this company
E-mail this story to a friend
Save Story
Search for suppliers of
Trade Associations


Home  |  My ThomasNet News®  |  Industry Market Trends®  |  Submit Release  |  Advertise  |  Contact News  |  About Us
Brought to you by Thomasnet.com        Browse ThomasNet Directory

Copyright © 2014 Thomas Publishing Company. All Rights Reserved.
Terms of Use - Privacy Policy



Error close

Please enter a valid email address