Successful Airborne Pollution Compliance Monitoring of Ships at Sea


Andor Newton cameras and Shamrock spectrographs combined in state-of-the-art optical remote sensing and measurement technique to tackle Gross Polluting Ships



Belfast, UK – Despite new legislation that requires ships to burn low sulphur marine oil in EU and US coastal waters, the economic benefits of continuing to use inexpensive, high-sulphur fuels, combined with the relatively small risk of getting caught, means that many ships are flouting the rules. However, this could be about to change as a real-time, airborne pollution detection system based around a pair of Andor UV spectrographs has been shown to be capable of checking up to 20 ships per hour.



The optical module at the heart of the airborne, remote absorption spectroscopy system was developed by a team from the Department of Earth and Space Sciences at Chalmers University of Technology in Gothenburg, Sweden, led by Professor Johan Mellqvist. From an altitude of 300-400 meters, a pair of Andor Newton cooled CCD cameras and Shamrock UV spectrographs measure reflected solar light from the water surface underneath the ship's exhaust plume to simultaneously measure SO2 and NO2. The data is paired with information from an Automatic Identification System (AIS) which provides the name and speed of the target ship and can be passed to harbour inspection authorities for follow-up inspection.



"Our compact, experimental instrument pack was designed to be carried in a Piper Navajo light aircraft and could be adapted for most small and inexpensive-to-operate aircraft and helicopters," says Johan Mellqvist. "This offers the possibility of routine, international, compliance monitoring of ships at sea, which is vital if significant reductions in sulphur and NOx from shipping are to be achieved over the next 10 years.



"The small form factors and low weight of the Andor Newton DU920 camera and Shamrock 303i spectrograph were huge assets for our airborne application but the choice was mainly due to Andor's high performance levels combined with the comprehensive range of complementary equipment and software. Performance was important to us as we have also used our detection technology from a stationary platform and for remote measurements of industrial emissions," concludes Mellqvist.



"Ships are one of biggest sources of sulphur dioxide (SO2) emissions in the EU and contribute significantly to 'acid rain' in many parts of Europe. Indeed, because of tighter regulations on the use of low sulphur fuels for heating oil and automotive petrol and diesel fuels, ship emissions of SO2 are now equivalent to all land-based emissions from all sources," according to Antoine Varagnat, Product specialist at Andor. "Combining the Newton camera and Shamrock spectrograph, Johan's team were able to successfully demonstrate a very sensitive and accurate setup for the rapid identification of gross polluting ships. This powerful technique is enabling his team to implement international surveillance of ships, together with a data repository in Gothenburg, and shows the way for the international community to tackle one more source of global pollution."



Andor's modular Spectroscopy solutions encompass a wide range of high performance CCD, ICCD, EMCCD and InGaAs array detectors, as well as a comprehensive range of Research-grade spectrograph platforms. To learn more about the Newton camera series and their use in spectroscopy, please visit the Andor website at www.andor.com.



Reference



1. Johan Mellqvist, Johan Ekholm, Kent Salo and Jerg Beecken, "Identification of gross polluting ships to promote a level playing field within the shipping sector" Technical Report, Earth and Space Sciences, Chalmers University of Technology, No. 11 (2014)



About Andor

Andor is a global leader in the pioneering and manufacturing of high performance scientific imaging cameras, spectroscopy solutions and microscopy systems for research and OEM markets. Andor has been innovating the photonics industry for over 20 years and continues to set the standard for high performance light measuring solutions, enabling its customers to break new ground by performing light measurements previously considered impossible. Andor's digital cameras, are allowing scientists around the world to measure light down to a single photon and capture events occurring within 1 billionth of a second.



Andor now has over 400 staff across 16 offices worldwide, distributing products to over 10,000 customers in 55 countries. Andor's products are used in a wide range of applications including medical research to further the understanding of heart disease, cancer and neuronal diseases such as Alzheimer's and Parkinson's disease. Andor also has applications for forensic science and astronomy. Through continuous dialogue with customers and strong teamwork, Andor continues to innovate ground-breaking products that improve the world in which we live. More information is available at www.andor.com.



About Oxford Instruments plc

Oxford Instruments designs, supplies and supports high-technology tools and systems with a focus on research and industrial applications. Innovation has been the driving force behind Oxford Instruments' growth and success for over 50 years, and its strategy is to effect the successful commercialisation of these ideas by bringing them to market in a timely and customer-focused fashion.



The first technology business to be spun out from Oxford University, Oxford Instruments is now a global company with over 2300 staff worldwide and is listed on the FTSE250 index of the London Stock Exchange (OXIG). Its objective is to be the leading provider of new generation tools and systems for the research and industrial sectors with a focus on nanotechnology. Its key market sectors include nano-fabrication and nano-materials. The company's strategy is to expand the business into the life sciences arena, where nanotechnology and biotechnology intersect.



This involves the combination of core technologies in areas such as low temperature, high magnetic field and ultra high vacuum environments; Nuclear Magnetic Resonance; x-ray, electron, laser and optical based metrology; atomic force microscopy; optical imaging; advanced growth, deposition and etching.



Oxford Instruments aims to pursue responsible development and deeper understanding of our world through science and technology. Its products, expertise, and ideas address global issues such as energy, environment, security and health.



For further information, please contact Andor Technology direct or their marketing agency, Catalyst Communications.



Andor Technology plc.

Corporate Headquarters

7 Millennium Way

Springvale Business Park

Belfast BT12 7AL

+44 (0) 28 9027 0812

Andor website

press@andor.com



Catalyst Communications

The Annexe

2 Crispin Way

Farnham Common

Buckinghamshire SL2 3UE

+44 (0) 1753 648 140

Catalyst website

john.waite@catalystpr.com



Andor contact

Jonathan Rice

+44 (0) 28 9023 7126



Media contact

John Waite

+44 (0) 1753 648 140

All Topics