All
Suppliers
Products
CAD Models
Diverse Suppliers
Insights
By Category, Company or Brand
All Regions
Alabama
Alaska
Alberta
Arizona
Arkansas
British Columbia
California - Northern
California - Southern
Colorado
Connecticut
Delaware
District of Columbia
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Manitoba
Maryland
Massachusetts - Eastern
Massachusetts - Western
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Brunswick
New Hampshire
New Jersey - Northern
New Jersey - Southern
New Mexico
New York - Metro
New York - Upstate
Newfoundland & Labrador
North Carolina
North Dakota
Northwest Territories
Nova Scotia
Nunavut
Ohio - Northern
Ohio - Southern
Oklahoma
Ontario
Oregon
Pennsylvania - Eastern
Pennsylvania - Western
Prince Edward Island
Puerto Rico
Quebec
Rhode Island
Saskatchewan
South Carolina
South Dakota
Tennessee
Texas - North
Texas - South
Utah
Vermont
Virgin Islands
Virginia
Washington
West Virginia
Wisconsin
Wyoming
Yukon

3D-Printing Marine-Grade Steel

Subscribe
3D-Printing Marine-Grade Steel

Marine-grade stainless steel, or 316 as it’s called in the industry, is highly sought after for applications that range from underwater storage tanks to kitchen utensils and appliances. This need stems from its unique ability to resist pitting and corrosion after being exposed to salt and water. However, these properties are usually obtained by adding molybdenum, which can have an adverse effect on the ability to stretch and form a metal.

Scientists at Lawrence Livermore National Laboratory may have come across a way to preserve the non-corrosive capabilities of 316 while simultaneously improving its ductility. The team announced a technique for 3D-printing a low-carbon type of marine grade stainless steel that they’re calling 316L.

As profiled in Nature Materials, the additive production process has been found to enhance both strength and ductility properties. This breakthrough translates to expanded capabilities in industries such as aerospace that operate in harsh environments where materials need to be durable, flexible, and non-corrosive.

The ability to 3D print these types of materials stems from analyzing their structure and understanding the small, splinter-like defects that seem to form when the metals are produced in traditional ways. Bringing an additive process addressed these gaps while preserving the essential benefits. Perhaps more exciting is that researchers believe this breakthrough could lead to improved production approaches for numerous other materials by using 3D printing. The results could enhance quality exponentially across a range of products and industries.

Next Up in Manufacturing & Innovation
Hyundai Signs R&D Pact with Advanced Materials Company
Show More in Manufacturing & Innovation