Andor iXon 860 EMCCD Powers Direct Video Recording of Cell Signalling Complexes


Albuquerque team designs unique, high-speed hyperspectral microscope to visualise membrane receptor dynamics at the molecular level in living cells



Belfast, UK: A unique hyperspectral microscope (HSM) designed specifically to visualise molecular-level protein-protein interactions in living cells has been unveiled recently by the University of Albuquerque. Designed around an Andor iXon 860 high-speed EMCCD detection system to record these profoundly challenging nanometer-scale events, the microscope delivers an unprecedented combination of speed, sensitivity and spectral detection.



The novel design of the HSM provides acquisition rates of 27 fps over a 28 square micrometre field of view with each pixel collecting 128 spectral channels, allowing the determination of stoichiometry and dynamics of small oligomers unmeasurable by any other technique. Led by Professor Keith Lidke, the New Mexico team performed single particle tracking of up to 8 spectrally distinct species of quantum dots (QDs), the distinct emission spectra of the QDs allowing localization with approx. 10 nm precision even when the probes were clustered at spatial scales below the diffraction limit.



"Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins," says Professor Lidke. "However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study in living cells. Our unique, high-speed HSM enables multi-color single particle tracking of up to eight different probes simultaneously and has allowed us to directly observe the behaviour of small signaling complexes that cannot be resolved with other diffraction-limited light microscopy techniques.



"We chose the Andor iXon 860 EMCCD camera to capture our signals because this demanding application involving high-speed acquisition under very low light conditions places real demands on detector technology to perform at significantly higher levels of sensitivity and speed. Our imaging approach uses a spectrometer to spread light from 500 nm to 750 nm across 128 pixels of the camera. In our typical, high-speed configuration, we use half the camera and run at approx. 1,000 fps with most pixels collecting just a few photons per frame. Electron Multiplying CCD (EMCCD) technology, as seen in the Andor iXon camera, amplifies down to single photons and is ideal for these studies," concludes Lidke.



According to Antoine Varagnat, product specialist at Andor, "The Andor iXon 860 EMCCD camera was able to meet the very challenging detection requirements of Professor Lidke's superfast hyperspectral microscope, namely ultra-low light detection at frame rates exceeding 1 kHz. This level of performance was a key enabler for the team for the development of suitable tools for the study of the organization and dynamics of their specific cellular components.



"In their exciting paper, the capabilities of the new microscope were demonstrated by the application of high-resolution, spectrally-based particle tracking to observe membrane protein behaviour, including, for example, the dynamic formation and dissociation of Epidermal Growth Factor Receptor dimers, four-colour QD tracking while simultaneously visualizing GFP-actin and high-density tracking for fast diffusion mapping."



To learn more about the iXon 860 or the iXon camera series and their use in microscopy and spectroscopy, please visit the Andor website at www.andor.com/scientific-cameras.



References

Patrick J. Cutler, Michael D. Malik, Sheng Liu, Jason M. Byars, Diane S. Lidke, Keith A. Lidke. "Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope" PLOS ONE (www.plosone.org) Volume 8, Issue 5, e64320 (May 2013). DOI: 10.1371/journal.pone.0064320



About Andor

Andor is a global leader in the pioneering and manufacturing of high performance scientific imaging cameras, spectroscopy solutions and microscopy systems for research and OEM markets. Andor has been innovating the photonics industry for over 20 years and continues to set the standard for high performance light measuring solutions, enabling its customers to break new ground by performing light measurements previously considered impossible. Andor's digital cameras, are allowing scientists around the world to measure light down to a single photon and capture events occurring within 1 billionth of a second.



Andor now has over 400 staff across 16 offices worldwide, distributing products to over 10,000 customers in 55 countries. Andor's products are used in a wide range of applications including medical research to further the understanding of heart disease, cancer and neuronal diseases such as Alzheimer's and Parkinson's disease. Andor also has applications for forensic science and astronomy. Through continuous dialogue with customers and strong teamwork, Andor continues to innovate ground-breaking products that improve the world in which we live.



More information is available at www.andor.com.



About Oxford Instruments plc

Oxford Instruments designs, supplies and supports high-technology tools and systems with a focus on research and industrial applications. Innovation has been the driving force behind Oxford Instruments' growth and success for over 50 years, and its strategy is to effect the successful commercialisation of these ideas by bringing them to market in a timely and customer-focused fashion.



The first technology business to be spun out from Oxford University, Oxford Instruments is now a global company with over 2300 staff worldwide and is listed on the FTSE250 index of the London Stock Exchange (OXIG). Its objective is to be the leading provider of new generation tools and systems for the research and industrial sectors with a focus on nanotechnology. Its key market sectors include nano-fabrication and nano-materials. The company's strategy is to expand the business into the life sciences arena, where nanotechnology and biotechnology intersect.



This involves the combination of core technologies in areas such as low temperature, high magnetic field and ultra high vacuum environments; Nuclear Magnetic Resonance; x-ray, electron, laser and optical based metrology; atomic force microscopy; optical imaging; advanced growth, deposition and etching.



Oxford Instruments aims to pursue responsible development and deeper understanding of our world through science and technology. Its products, expertise, and ideas address global issues such as energy, environment, security and health.



For further information, please contact Andor Technology



Andor Technology plc.

Corporate Headquarters

7 Millennium Way

Springvale Business Park

Belfast BT12 7AL

+44 (0) 28 9027 0812

press@andor.com




All Topics