Andor EMCCD Camera Leads Search for Earth-like Exoplanets


Fast readout speeds, negligible readout noise, high spatial resolution and photometric accuracy of ultra-sensitive Andor iXon 897 EMCCD camera improves chance of discovering planets outside our solar system

Belfast, UK- The prospect of success in the search for Earth-like exoplanets capable of supporting life is being enhanced with the adoption of the Andor iXon 897 EMCCD camera. The ultra-sensitive EMCCD device was chosen by the Stellar Observation Network Group (SONG) following a study led by Kennet Harpsoe from the Centre for Star and Planet Formation in Copenhagen.

This shows that the camera's ability to produce images at very high readout speeds and negligible readout noise, even at very low light levels, is ideal for their high frame rate application. The study also shows that this ground-breaking improvement in spatial resolution is not at the expense of photometric accuracy or stability and could improve significantly the photometry of faint stars in extremely dense fields by alleviating crowding.

"Rare gravitational microlensing events, where a star's gravitational field deviates the light from a background source, enable us to detect objects as small as an Earth-like exoplanet," says Kennet Harpsoe of SONG. "However, the likelihood that two random stars become sufficiently aligned is vanishingly small and almost all microlensing events occur towards the centre of the Galaxy in the densest fields in the night sky. Consequently, the stars appear as a continuum, where only the brightest stars can be distinguished as individual stars.

"The significant improvement in resolution, fast readout times and negligible readout noise brought about by the Andor EMCCD camera is a prerequisite for successfully observing gravitational microlensing events. Our work demonstrates that SONG's quest to find small, earth-like exoplanets capable of supporting life through our global network of robotic telescopes can go forward with confidence", concludes Harpsoe.

According to Colin Duncan, an imaging application specialist at Andor, "SONG, the Stellar Observations Network Group, is an initiative of astronomers from the Niels Bohr Institute and Aarhus University and is building a global network of robotic one-metre telescopes to observe any star around the clock, since the telescopes succeed each other as the star passes overhead. Although EMCCD's have different sources of noise compared to conventional CCDs, Kennet Harpsoe has demonstrated that new methods for photometric reduction can be developed to ensure that the iXon 897 EMCCD is the ideal detector for high frame rate applications where resolution is vital."

In the 17 years since the discovery of the first planet in orbit around another star, more than 600 exoplanets have been detected. However, almost all are so-called 'Hot Jupiters' or 'Roaster Planets', giant planets orbiting close to their parent stars with very high surface temperatures, simply because they are the easiest to visualise. To date, telescopic detection of small Earth-like objects capable of supporting life has remained virtually impossible.

Gravitational microlensing is an astronomical phenomenon discussed by Einstein in 1915. It occurs when the light from a distant star or planet is bent due to the gravitational field of a foreground object when they are sufficiently aligned leading to two unresolved images and observable brightening. Since microlensing observations do not rely on the radiation received from the lens object, astronomers can study objects no matter how faint. Therefore, it is an ideal technique to study the galactic population of faint or dark objects, such as brown dwarfs, red dwarfs, white dwarfs, neutron stars, black holes and exoplanets. Since the microlensing effect is wavelength-independent, source objects emitting any kind of electromagnetic radiation may be studied.

For more details of Andor's range of high performance camera solutions, please visit the Andor website, www.andor.com.

About Andor
Andor is a world leader in Scientific Imaging, Spectroscopy Solutions and Microscopy Systems. Established in 1989 from Queen's University in Belfast, Northern Ireland, Andor Technology now employs over 300 people in 16 offices worldwide, distributing its portfolio of over 70 products to 10,000 customers in 55 countries.

Andor's digital cameras, designed and manufactured using pioneering techniques developed in-house, allow scientists around the world to measure light down to a single photon and capture events occurring within 1 billionth of a second. This unique capability is helping them push back the boundaries of knowledge in fields as diverse as drug discovery, toxicology analysis, medical diagnosis, food quality testing and solar energy research. More information about Andor Technology PLC (LSE: AND) is available at the company's website, www.andor.com.

For further information, please contact Andor Technology direct or their marketing agency, Catalyst Communications.

Victoria Gault

Andor Technology plc.
Corporate Headquarters
7 Millennium Way
Springvale Business Park
Belfast BT12 7AL
+44 (0) 28 9027 0812
Andor website
press@andor.com

John Waite

Catalyst Communications
The Annexe
2 Crispin Way
Farnham Common
Buckinghamshire SL2 3UE
+44 (0) 1753 648 140
john.waite@catalystpr.com

All Topics